
I’ve learned some lessons about
component writing lately. There

is a big difference between writing
an individual component and writ-
ing a component suite. By “compo-
nent suite” I mean a group of
components designed to work
together for a common purpose,
like the components on the Data
Controls page of the Palette.

I have been working on a preven-
tive maintenance manager, a very
date intensive application. I pur-
chased a calendar component
suite which proved ineffective, so I
started writing my own system.
During development I found sev-
eral areas where component suites
require special attention.

First, components in suites
generally need to interact with one
another requiring special events or
messages.

Secondly, they are likely to be
used frequently and therefore in-
fluence the appearance of an appli-
cation. Consideration needs to be
given to allowing the user to ‘bor-
row’ your control’s appearance
and functionality in other areas.

Finally, components in a suite
have to be simple to use. It’s one
thing to puzzle out how to use a
single component, quite another to
repeat this for several more.

In this article I’m going to
examine the first issue: making
components in a suite interact.

Events
Events are the real heart of the
Delphi VCL. Without events com-
ponents would be useless. There is
perhaps one little quirk with events
that needs to be fixed. If you hook
an event in your code the event is
no longer accessible to the user.
Let’s say you want to make your
component react when the user
clicks another component. You can
do this by hooking the event.
Listing 1 shows the code to do this.

At design time the user can
assign a handler to the OnClick
event. At runtime, though, your
code re-assigns the event to the
DoSomething handler and the user’s
code doesn’t execute.

There are three possible solu-
tions to this problem. First, you
could use messages. SendMessage
and PostMessage only work for de-
scendants of TWinControl. Perform
works for all TControl descendants
but not non-visual components. All
messages have a disadvantage in
that the message is sent whether or
not there are any components to
respond.

Second, you could create a TCom-
ponentLink like TDataLink. This is
probably a useful solution, but
would involve a lot of coding.
Finally, you could create an event
list of some type. This is the route
I chose.

Actually, there is a fourth
method as well: declare an array[0
..somenumber] of TNotifyEvent and
assign your handler to one of the
array members. This isn’t a good
solution though. Sooner or later a
user is going to want to hook
somenumber+1 events and they won’t
be able to.

TEventList
I was a big fan of Borland Pascal 7
collections. I used them a lot for
many seemingly unrelated tasks. I
really missed them for a while until
I realized TList was nearly as use-
ful. TCollection and TList both use
untyped pointers to store data.
Consequently, with a little imagina-
tion you can store pretty much any-
thing. Even event handlers, well
the pointers to them anyway.

To start, I created a TEventList
descendant of TList. I added an
AddEvent method and an Event
property of type TNotifyEvent. To
save the user from having to re-
member to dispose of any items
created I added a destructor.
Listing 2 shows the declaration.

While TNotifyEvent is a method
pointer, you can’t simply store it
directly in a TList, at least not un-
less you like GPFs. It took a fair
amount of experimentation to find
the solution.

The answer is to wrap the TNoti-
fyEvent in an object. TWrapper has
one field, AEvent, of type TNoti-
fyEvent. In the AddEvent method I
create a new TWrapper, set its Event
field to the passed Value parameter
(type TNotifyEvent) and add the

constructor TSomeComponent.Create(AOwner: TComponent);
begin
 inherited Create(AOwner);
 FSourceComponent.OnClick := DoSomething;
end;
procedure TSomeComponent.DoSomething;
begin
 { do something useful }
end;

➤ Listing 1

TEventList = class(TList)
private
 function GetEvent(Index: Integer): TNotifyEvent;
public
 destructor Destroy; override;
 function AddEvent(Event: TNotifyEvent): integer;
 property Events[Index: Integer]: TNotifyEvent read GetEvent;
end;

➤ Listing 2

Creating Component Suites:
An Event List
by Paul Warren

July 1997 The Delphi Magazine 37

object to the list. Listing 3 shows
the TWrapper declaration and the
AddEvent method.

In the destructor I dispose of the
TWrappers one by one until the list
is empty and then call the inherited
destructor.

The only thing left is to access
the events when required. To do
this the GetEvent property access
method returns the event based on
the passed index into the list. See
Listing 4.

Using TEventList
So what is TEventList really for?
While the concept is simple it still
seems a lot of work to allow more
than one component to respond to
a single event.

Well let’s look at a trivial exam-
ple. I’ve created a TSpeedButton
descendant called THookedButton. It
has two additional fields, FEvent-
List and FHookEvent, and a write
only property HookEvent, which has
a property access method named
SetHookEvent. Any component
which assigns a method to a THook-
Button.HookEvent will receive notifi-
cation when the overridden Click
method is called. Listing 5 shows
the code for THookedButton.

I have also created a TLabel de-
scendant called THookLabel which
can display a date, time or an up-
beat message as its Caption de-
pending on the setting of the
MessageKind property. THookLabel
also has a protected method
UpdateLabel which simply sets the
Caption when called. Listing 6

shows the complete THookLabel
code.

The intention here is that when
the user clicks the button each
label will respond in a different and
distinguishable way. So what, you
ask! You can do that by calling
UpdateLabel in the OnClick event
handler within the main form.

Well consider this. There are
many component suites available,
both commercial and shareware or
freeware that rely on interaction
between various components. Will
your users prefer the following
instructions:

Place the button and three labels
on a form, set the label Mess-
sageKind properties to the de-
sired value and, in the button’s
OnClick event type:

 HookLabel1.UpdateLabel;
 HookLabel2.UpdateLabel;
 HookLabel3.UpdateLabel;

or do you think they will prefer
these instead:

Place the button and three labels
on a form, set the MessageKind
property to the desired value
and...

...well that’s it. No code. It just
works.

Remember this is a trivial exam-
ple. I have personally tried to use
components which required exten-
sive and convoluted code in an
event handler, often repeated for
each component that is supposed
to respond to the event. Much of
this coding can be hidden from the
user inside methods which hook

type
 { object wrapper for TNotifyEvent }
 TWrapper = class(TObject)
 AEvent: TNotifyEvent;
 end;
function TEventList.AddEvent(Event: TNotifyEvent): integer;
var
 P: TWrapper;
begin
 { create a new wrapper }
 P := TWrapper.Create;
 { set its AEvent field := TNotifyEvent }
 P.AEvent := Event;
 { add to list and return its position }
 Result := Add(P);
end;

➤ Listing 3

function TEventList.GetEvent(Index: Integer): TNotifyEvent;
var P: TWrapper;
begin
 { set var P := desired Item }
 P := Items[Index];
 { return the TNotifyEvent }
 Result := P.AEvent;
end;

➤ Listing 4

unit Hookdbtn;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics,
 Controls, Forms, Dialogs, Buttons, EList;
type
 THookedButton = class(TSpeedButton)
 private
 FEventList: TEventList;
 FHookEvent: TNotifyEvent;
 procedure SetHookEvent(Value: TNotifyEvent);
 protected
 procedure Click; override;
 public
 constructor Create(AOwner: TComponent); override;
 destructor Destroy; override;
 property HookEvent: TNotifyEvent write SetHookEvent;
 published
 end;
procedure Register;
implementation
constructor THookedButton.Create(AOwner: TComponent);
begin
 inherited Create(AOwner);
 FEventList := TEventList.Create;

end;
destructor THookedButton.Destroy;
begin
 FEventList.Free;
 inherited Destroy;
end;
procedure THookedButton.SetHookEvent(Value: TNotifyEvent);
begin
 FEventList.AddEvent(Value);
end;
procedure THookedButton.Click;
var i: integer;
begin
 inherited Click;
 for i := 0 to FEventList.Count-1 do begin
 FHookEvent := FEventList.Events[i];
 FHookEvent(Self);
 end;
end;
procedure Register;
begin
 RegisterComponents(’Samples’, [THookedButton]);
end;
end.

➤ Listing 5

38 The Delphi Magazine Issue 23

the appropriate event. Figure 1
shows the example in action.

Further Uses For TEventList
You may have noticed that, while I
made no use of the fact that TEven-
tList is indexed, you could in the-
ory use the event index to trigger
specific events. AddEvent returns
the event index to the hooking
component. Who knows, it could
be useful.

Conclusion
Not only do you relieve your users
of tedious and frustrating coding,
you prevent mistakes. Twice now I
have been so annoyed with compo-
nent suites that I returned them to
the vendor. Carefully planned
components avoid this problem
and one aspect of careful planning
is reducing reliance on end user
code in component execution.

Over the next few months, space
permitting, I’ll be back to examine
the appearance issue and share
some other useful tips for building
component suites. Meanwhile,
experiment with TEventList and
possibly the Perform method and
see how much nicer components
can be when using them is virtually
code free.

Paul Warren runs HomeGrown
Software Development in Lan-
gley, British Columbia, Canada.
Email Paul at hg_soft@uniserve.
com or visit his web site:
 http://users.uniserve.com/~hg_soft
[and be very careful if you want
to try and sell him a component
suite...! Editor]

unit Hooklbl;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
 Forms, Dialogs, StdCtrls, HookdBtn;
type
 TMessageKind = (mkDate, mkTime, mkUpbeat);
 THookLabel = class(TLabel)
 private
 FMessageKind: TMessageKind;
 FSource: THookedButton;
 procedure SetSource(Value: THookedButton);
 protected
 public
 constructor Create(AOwner: TComponent); override;
 procedure UpdateLabel(Sender: TObject);
 published
 property MessageKind: TMessageKind read FMessageKind write FMessageKind;
 property Source: THookedButton read FSource write SetSource;
 end;
procedure Register;
implementation
constructor THookLabel.Create(AOwner: TComponent);
var i: integer;
begin
 inherited Create(AOwner);
 { search for any THookedButtons }
 for i := 0 to TForm(AOwner).ComponentCount-1 do begin
 if TForm(AOwner).Components[i] is THookedButton then begin
 { if found set FSource }
 FSource := THookedButton(TForm(AOwner).Components[i]);
 { break since we only need one FSource }
 Break;
 end;
 end;
end;
procedure THookLabel.UpdateLabel(Sender: TObject);
begin
 case MessageKind of
 mkDate: Caption := DateToStr(Date);
 mkTime: Caption := TimeToStr(Time);
 mkUpbeat: Caption := ’What a wonderful day’;
 end;
end;
procedure THookLabel.SetSource(Value: THookedButton);
begin
 FSource := Value;
 { if successful hook HookEvent }
 if (FSource <> nil) then
 FSource.HookEvent := UpdateLabel;
end;
{ register component on Samples page }
procedure Register;
begin
 RegisterComponents(’Samples’, [THookLabel]);
end;
end.

➤ Listing 6

➤ Left: Figure 1

July 1997 The Delphi Magazine 39

	Events
	TEventList
	Using TEventList
	Further Uses For TEventList
	Conclusion

